Insulin mutations in diabetes: the clinical spectrum.

نویسنده

  • Benjamin Glaser
چکیده

Studies of monogenic disorders of -cell function have yielded important information on -cell physiology and have improved the diagnosis and treatment of patients with these rare diseases. These disorders include defects associated with increased insulin secretion, causing hypoglycemia, and decreased insulin secretion, resulting in diabetes. The most common form of monogenic diabetes is so-called maturity-onset diabetes of the young (MODY) syndrome, causing autosomal dominant non–insulin dependent diabetes appearing before the age of 25 years. Mutations in six genes can cause MODY, although in 16–45% of cases the genetic etiology is still unknown (1). Neonatal diabetes mellitus (NDM) is another form of monogenic diabetes, usually defined as overt diabetes diagnosed during the first 6 months of life (2). The disease is rare (incidence 1:300,000–500,000 live births), and 50% of patients have transient NDM (TNDM), in which the disease remits after a few months but may reappear months or years later. The other 50% have permanent NDM (PNDM). In a small percentage of these, diabetes is part of a complex clinical syndrome involving organs other than the endocrine pancreas. For those with isolated PNDM, mutations in four different genes have been identified. Inactivating glucokinase mutations were discovered first, but appear to be rather rare causes of this syndrome (3). Activating mutations in either of the two subunits of the -cell ATPsensitive K channel, ABCC8 and KCNJ11, are more frequently seen (4,5). In a landmark report last year, Stoy et al. (6) described 16 patients with PNDM caused by insulin gene mutations. These mutations appear to cause abnormal protein folding resulting in endoplasmic reticulum (ER) stress, which activates apoptosis pathways leading to -cell death. Stoy et al. suggested the need for additional studies in larger patient populations to discover the true incidence and clinical spectrum associated with insulin mutations. In this issue of Diabetes, three groups present their findings after screening different patient populations for INS mutations. Polak et al. (7) found three missense mutations in 38 PNDM patients and one in a patient with childhood-onset nonautoimmune diabetes. Further screening identified three affected relatives. Molven et al. (8) expanded the spectrum of disease associated with INS mutations by screening patients with diabetes onset well after the neonatal period. They identified one mutation in 92 patients with the MODY phenotype and one in 124 patients with autoantibodynegative type 1 diabetes, but none in 99 patients with autoantibody-positive familial type 1 diabetes. Edghill et al. (9) identified 32 mutation carriers among 279 patients with PNDM diagnosed before the age of 6 months, 2 more among 86 patients diagnosed between 6 and 12 months, and none in 58 patients diagnosed between 12 and 24 months of age. In addition, they identified one affected individual among 296 patients with MODY and one in 463 patients with youngonset type 2 diabetes. Taken together, these studies confirm that the vast majority of patients with INS mutations present with severe insulin-dependent diabetes within the first 6 months of age. However, a small minority present as late as 20 years of age and can resemble MODY, early-onset type 2 diabetes, or childhood-onset type 1 diabetes. Similarly, the clinical severity can vary from severe intrauterine insulin deficiency, causing low birth weight, to diet-responsive diabetes phenotypically indistinguishable from type 2 diabetes. Reviewing the published data from the last several years, the genetic etiology of TNDM and PNDM is becoming clearer (2,10). Currently, the precise genetic cause of TNDM can be determined in almost all patients, whereas for 40% of patients with PNDM the genetic etiology is still unknown (Fig. 1). These studies clearly demonstrate that all patients with diabetes onset before the age of 6 months should be investigated for monogenic diabetes, as autoimmune diabetes is exceedingly rare in this age-group. Patients with autoantibody-negative diabetes diagnosed after the age of 6 months may also warrant genetic investigation, although the chance of identifying a disease-causing mutation is still low. These are not the first insulin gene mutations to be discovered. In the early 1980s, shortly after the discovery of the insulin gene sequence (11), several patients with insulin gene mutations were identified. Some mutations affected insulin-proinsulin processing, resulting in secretion of large amounts of partially processed proinsulin (12–15), whereas others appeared to produce normally processed insulin with subnormal biological activity (16–18). For most of these, there was a clear association between the mutation and marked hyperinsulinemia or proinsulinemia, but not with diabetes, as some mutation carriers were normoglycemic or had variable degrees of glucose intolerance. It is theoretically possible that other insulin gene mutations could result in increased function and thus hypoglycemia, as has been found for glucokinase (19). To study this, Edghill et al. (9) screened 49 patients with hyperinsulinemic hypoglycemia, but found no INS mutations, From the Endocrinology and Metabolism Service, Internal Medicine Department, Hadassah-Hebrew University Medical School, Jerusalem, Israel. Address correspondence and reprint requests to Benjamin Glaser, MD, Endocrinology and Metabolism, Hadassah Hospital, P.O.B. 12000, Jerusalem 91120, Israel. E-mail: [email protected]. DOI: 10.2337/db08-0116 ER, endoplasmic reticulum; MODY, maturity-onset diabetes of the young; NDM, neonatal diabetes mellitus; PNDM, permanent NDM; TNDM, transient NDM. See accompanying original articles, pgs. 1034, 1115, and 1131. © 2008 by the American Diabetes Association. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact. COMMENTARY

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Insulin Receptor Gene Mutations in Iranian Patients with Type II Diabetes Mellitus

Background: Patients with diabetes mellitus type II suffer from hyperglycemia because they are not able to use the insulin that they produce, often due to inadequate function of insulin receptors. There are some evidences that this deficiency is inherited in a dominant autosomal manner and leads to the malfunction of the pancreatic beta cells resulting in insulin excretion disorders. In this st...

متن کامل

Lack of Association of Mitochondrial A3243G tRNALeu Mutation in Iranian Patients with Type 2 Diabetes

Many kinds of mutations in mitochondrial (mt) DNA have been reported to be related to the development of Diabetes Mellitus (DM), this type of diabetes has also been shown to be influenced by other genetic factors and/or environmental factors. Among them, tRNALeu(UUR) and its adjacent mtDNA NADH dehydrogenase subunit 1(ND1) region within the mt genome are linked to high susceptibility to DM. A p...

متن کامل

Genetic Susceptibility to Transient and Permanent Neonatal Diabetes Mellitus

Neonatal diabetes mellitus (NDM) is a rare kind of diabetes characterized by hyperglycemia and low levels of insulin. Clinically, it is categorized into two main types: transient NDM (TNDM) and permanent NDM (PNDM). These types are diagnosed based on duration of insulin dependence early in the disease. In TNDM, diabetes begins in the first few weeks of life with remission in a few months. Howev...

متن کامل

Clinical and Molecular Genetic Analysis of Iranian Patients with Neonatal Diabetes demonstrating Mutations in KCNJ11 gene

Abstract We screened the KCNJ11 gene from 35 individuals clinically diagnosed with type 1 diabetes mellitus under the age of 6 months in 3 years duration. Six different heterozygous missense mutations were found in 7 of the 35 probands, which accounted for 20% of all individuals. A novel mutation W68R (No Locus, GU170814; 2009) was identified in the kir6.2, the pore-forming subunit of the KATP ...

متن کامل

Study of frequency and spectrum of GJB2 gene mutations in non-syndromic hearing loss patients of Semnan province

Abstract Background and aim: The frequency of hearing impairment is one out of 500 newborn babies, worldwide. However, in Iran, due to the high prevalence of consanguineous marriages, this amount is estimated to be two to three times higher. So far, more than 120 genes causing non-syndromic Hearing loss (NSHL) have been identified in the world, of which GJB2 gene mutations are the most common c...

متن کامل

The Effect of Green Tea versus Sour Tea on Insulin Resistance, Lipids Profiles and Oxidative Stress in Patients with Type 2 Diabetes Mellitus: A Randomized Clinical Trial

Background: By decreasing oxidative stress and whereby decreasing insulin resistance, it may be possible to decrease complications of Diabetes Mellitus (DM). Green tea and sour tea contain phytochemicals which have anti-oxidative function. The aim of this study is to compare the effect of sour and green tea consumption on insulin resistance and oxidative stress in DM.Methods: This study is a ra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Diabetes

دوره 57 4  شماره 

صفحات  -

تاریخ انتشار 2008